Accurate Localization of Cell Nuclei in PAP Smear Images using Gradient Vector Flow Deformable Models

نویسندگان

  • Marina E. Plissiti
  • Christophoros Nikou
  • Antonia Charchanti
چکیده

In this work, we present an automated method for the detection of cells nuclei boundaries in conventional PAP stained cervical smear images. The proposed method consists of three phases: a) the definition of candidate nuclei centroids set using mathematical morphology, b) the initial approximation of cells nuclei boundaries and c) the application of the Gradient Vector Flow (GVF) snakes for the final estimation of candidate cell nuclei boundaries. It must be noted that the initial approximation of each snake position is obtained automatically, without any observer interference. For the final determination of the nuclei in our images, we perform a fuzzy C-means clustering, using a data set of patterns based on the characteristics of the area enclosed by the final position of the GVF snakes. The proposed method is evaluated using cytological images of conventional PAP smears, which contain 3616 recognized squamous epithelial cells. The results show that the application of the GVF snakes entails in accurate nuclei boundaries, and consequently in the improvement of the performance of the clustering algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images

In this work, we present an automated method for the detection and boundary determination of cells nuclei in conventional Pap stained cervical smear images. The detection of the candidate nuclei areas is based on a morphological image reconstruction process and the segmentation of the nuclei boundaries is accomplished with the application of the watershed transform in the morphological color gr...

متن کامل

Automated segmentation of cell nuclei in PAP smear images

In this paper an automated method for cell nucleus segmentation in PAP smear images is presented. The method combines the global knowledge about the cells and nuclei appearance and the local characteristics of the area of the nuclei, in order to achieve an accurate nucleus boundary. Filters and morphological operators in all three channels of a color image result in the determination of the loc...

متن کامل

Inflammatory Cell Extraction and Nuclei Detection in Pap Smear Images

The automated diagnosis of cervical cancer in Pap smear images is a difficult though extremely important procedure. In order to obtain reliable diagnostic information, the nuclei and their characteristics must be correctly identified and evaluated. However, the presence of inflammatory and overlapping cells in these images complicates the detection process. In this work, a segmentation algorith...

متن کامل

Various Techniques for Classification and Segmentation of Cervical Cell Images - A Review

Pap smear test plays an important role for the early diagnosis of cervical cancer in which human cells taken from the cervix of patient are analysed for pre-cancerous changes. The manual analysis of these cells by expert cytologist is labor intensive and time consuming job. The automatic and accurate detection of cervical cells are two critical preprocessing steps for automatic Pap smear image ...

متن کامل

On the importance of nucleus features in the classification of cervical cells in Pap smear images

In this work, we investigate the classification of cervical cells by exploiting only the nucleus features and not taking into account the features extracted from the cytoplasm area. This procedure is motivated by the fact that the nuclei areas can be extracted automatically from Pap smear images, in contrast to the cytoplasm segmentation which is not a solved problem yet. Furthermore, we consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010